News location:

Canberra Today 14°/18° | Friday, March 29, 2024 | Digital Edition | Crossword & Sudoku

‘Breakthrough’ invention could lead to bendable phones

Associate Prof Larry (Yuerui) Lu (left) and PhD researcher Ankur Sharma. Photo: ANU
A BREAKTHROUGH invention by engineers at the Australian National University could lead to a future of bendable devices such as mobile phones. 

The engineers invented a semiconductor with organic and inorganic materials which can convert electricity into light efficiently.

Lead senior researcher associate Prof Larry Lu said the invention is a major breakthrough in the field.

“For the first time, we have developed an ultra-thin electronics component with excellent semiconducting properties that is an organic-inorganic hybrid structure and thin and flexible enough for future technologies, such as bendable mobile phones and display screens,” says Prof Lu.

The organic component has the thickness of just one atom – made from just carbon and hydrogen – and forms part of the semiconductor that the ANU team developed.

The inorganic component has the thickness of around two atoms. The hybrid structure can convert electricity into light efficiently for displays on mobile phones, televisions and other electronic devices.

The ANU team’s semiconducting material, which cannot be seen with the naked eye, sits in between gold electrodes on the chip that is a functional transistor. Photo: ANU
Prof Lu says the invention also opens the door to a new generation of high-performance electronic devices made with organic materials that will be biodegradable or that can be easily recycled, promising to help substantially reduce e-waste.

The huge volumes of e-waste generated by discarded electronic devices around the world is causing irreversible damage to the environment and in Australia 200,000 tonnes of e-waste is produced every year, with only four per cent of this waste recycled.

PhD researcher Ankur Sharma, who recently won the ANU three-minute thesis competition, says experiments demonstrate the performance of their semiconductor will be much more efficient than conventional semiconductors made with inorganic materials such as silicon.

“We have the potential with this semiconductor to make mobile phones as powerful as today’s supercomputers,” says Mr Sharma.

“The light emission from our semiconducting structure is very sharp, so it can be used for high-resolution displays and, since the materials are ultra-thin, they have the flexibility to be made into bendable screens and mobile phones in the near future.”

The team grew the organic semiconductor component molecule by molecule, in a similar way to 3D printing. The process is called chemical vapour deposition.

“We characterised the opto-electronic and electrical properties of our invention to confirm the tremendous potential of it to be used as a future semiconductor component,” says Prof Lu.

“We are working on growing our semiconductor component on a large scale, so it can be commercialised in collaboration with prospective industry partners.”

The work is published in “Advanced Materials”.

 

Who can be trusted?

In a world of spin and confusion, there’s never been a more important time to support independent journalism in Canberra.

If you trust our work online and want to enforce the power of independent voices, I invite you to make a small contribution.

Every dollar of support is invested back into our journalism to help keep citynews.com.au strong and free.

Become a supporter

Thank you,

Ian Meikle, editor

Share this

Leave a Reply

Related Posts

Follow us on Instagram @canberracitynews