Brainwave: Researchers build brain-on-a-chip

Share Canberra's trusted news:
ANU researcher Dr Vini_Gautam… “The project will provide new insights into the development of neuro-prosthetics, which can help the brain recover after damage due to an accident, stroke or degenerative neurological diseases.”

ANU researchers have developed a material to allow brain cells to grow and form predictable circuits, which could lead to the development of prosthetics for the brain.

Researchers grew the brain cells on a semiconductor wafer patterned with nanowires that act as a scaffold to guide the growth of brain cells.

Lead researcher Dr Vini Gautam from the Research School of Engineering at ANU said the scaffold provides a platform to study the growth of the brain cells and how they connect with each other.

“The project will provide new insights into the development of neuro-prosthetics, which can help the brain recover after damage due to an accident, stroke or degenerative neurological diseases,” Dr Gautam said.

The study is the first to show the neuronal circuits grown on the nanowire scaffolds were functional and highly interconnected, opening the potential to apply their scaffold design for neuro-prosthetics.

Researchers grew the brain cells on a semiconductor wafer patterned with nanowires which act as a scaffold to guide the growth of brain cells.

Project group leader Dr Vincent Daria, from the John Curtin School of Medical Research, hopes to use the brain on a chip to understand how neurons in the brain form computing circuits and eventually process information.

“Unlike other prosthetics, like an artificial limb, neurons need to connect synaptically, which form the basis of information processing in the brain during sensory input, cognition, learning and memory,” Dr Daria said.

“Using a particular nanowire geometry, we have shown that the neurons are highly interconnected and predictably form functional circuits.”

Dr Daria said it was important to build up the appropriate environment where neurons can be predictably connected into functional circuits.

“We were able to make predictive connections between the neurons and demonstrated them to be functional with neurons firing synchronously,” he said.

“This work could open up new research model that builds up a stronger connection between materials nanotechnology with neuroscience.”

The research was a multi-disciplinary collaboration between physics, engineering and neuroscience.

The nanowires were fabricated by a group led by Prof Chennupati Jagadish at the Research School of Physics and Engineering at ANU.

The research has been published in Nano Letters.

Who Can You Trust?

In a world beleaguered by spin and confused messages, there's never been more need for diverse, trustworthy, independent journalism in Canberra.

Who can you trust? Well, for more than 25 years, "CityNews" has proudly been an independent, free, family-owned news magazine, serving the national capital with quality, integrity and authority. Through our weekly magazine and daily through our digital platforms, we constantly and reliably deliver high-quality and diverse opinion, news, arts, socials and lifestyle columns.

If you trust our work online and believe in the power of independent voices, I encourage you to make a small contribution.

Every dollar of support will be invested back into our journalism so we can continue to provide a valuably different view of what's happening around you and keep citynews.com.au free.

Click here to make your donation and you will be supporting the future of journalism and media diversity in the ACT.

Thank you,

Ian Meikle, editor

Previous articleMusic and fashion meet in CSO initiative
Next articleArts / Vivaldi’s ‘au revoir’ shows

Leave a Reply